GSA API Strategy - Navin Vembar and Joseph Castle - 3/4/16

“The rise of application programming interface (API) represents a business opportunity and a

technical challenge!.”

This GSA API Strategy describes GSA’s future direction for agency-wide APl management
including design, development, architecture, operations and support, and security.

Objectives
- Harness APl management to maximize customer value and technical efficiencies.

- Expose public data for transparency, data consumer engagement, app
development, etc.

- Promote system integration; promote migration of legacy systems by moving
data management away from system logic allowing for future technology
solutions.

- Adopt industry best practices with API design, development, and management.
- Consider opportunities for revenue through API offerings.

Figure 1 (below) provides an overview of the importance of APl interactions with internal and
external organizational environments. These are items to consider for pursuing an API strategy
and management.

Inteqgrate and Create APIs

Outside the Enterprise .+ Easlly Connect S0, ES8, and legacy applicatons Within the Enterprise
 Agdredare dara Including NoSQL up o 10K faser
- Bulld scalable connactions to clowd solutions
: + Automatlcally create data APIs with Live business Logic = |
Internat of Things '_-.\.J | ’ I=|||[=| Secure Data

[| + PrOTECT 34aInst thraats and OWASP wuineraniliges =
Mobile ~—__"J— - -~ Control acess with 550 and Identlty managemant > oo Application Portfolio
| R ~ Provige end-to-end security for apps, mobile, and IoT o oo

53a5/Cloud Solutions . o
I i ticat
AWS, Soogle, SFOC ... IDfAuthentication
~ SImplify and control developer access 1o data | =
~ Builld 3 widar partner of public deveioper ecosysiem . —

Partner Ecosystams A i . LEVBrage Tools Tt reouce mobile 3pp delivery tme 3 AN\~ || Reporting & Analytics
24
_ y Unlock the Value of Data ; —~
External Developers] - Monetze APIs [0 denarate revenu e =~ =] Internal Teams

-~ Build digital ecosysiems enhance business value
-~ Create eMcencies throudh analy tics and opdmization

Figure 1: External/Internal API interactions’

' CA Technologies. 2016. AP/ Strategy and Architecture: A Coordinated Approach.
2 CA Technologies. 2016. The APl Management Playbook.

Future APl Development at GSA

The future of APl development in GSA will follow industry best practice as discussed below. A
way to consider APl management is in two categories: 1.) the actors and corresponding
technologies, and 2.) particular API specifications.

Actors and Technologies
A graphical representation of actors and technologies is featured in Figure 1 and considers the
components and actors of proper APl management.

- Actors as Developers - App Developer, APl Owner, API Architect - these individuals are
concerned with creating an AP| to meet the business needs in exposing data.

- Actors as Consumers - End User, Client App - these individuals or technologies are
interested in consuming the data exposed by the APl and need stable code and
supporting documentation.

- Developer Portal - provides an interface where developers access APls, documentation,
community forum, and other useful content (e.g., open.gsa.gov) (Note: need internal
development environment to build, test, and deploy APls; need proper development
tools.). Positive examples include open.nasa.gov and open.fda.gov.

- API Gateway - delivers the security, caching, and orchestration to deploy an API.
Defaulting to api.data.gov for public APlIs.

- APl Implementation and Backend System - these are core GSA systems where data
exposure facilitates efficient processes.

&)

F———=
L — 5

Developer Portal

-

= E

)
[y A
A
m et
-t

API Gateway Sy APLImplamentatian

App Cesvel pper -
-

Figure 2: API Management Components by CA Technologies: API Strategy and Architecture®

Along with the actors and technological components, GSA API developers must consider the
purpose for creating the APl and the audience wanting to consume the API.
- Purpose for creating an API
- GSA wants to expose data for compliance or for operational efficiency.

3 CA Technologies. 2016. API Strategy and Architecture: A Coordinated Approach.

- Consider the audience and the amount of support needed (i.e., What happens if
the APl changes? What happens if the data changes?).

- Reduce “hard” dependencies between implementation teams by agreeing to
shared APIs that are built and consumed independently - moving us along a
microservices model.

- Audience for consuming the API

- Public - general data consumers - customers, agencies, industry, non-profits,
universities, public, etc.

- Private - internal GSA systems w/ corresponding program offices; external GSA
systems w/ corresponding program offices. Internal implementations within a
system.

API Specifications

The following outlines how future APIs should be designed and developed at GSA. APIs that do
not meet these specifications can be brought in-line if deemed necessary by the APl and
business owners.

Goals of API Design*
- Enable self-service for app developers and app users.

Reduce barriers to accessing valuable enterprise resources.

Prioritize needs and preferences of client app developers.

Encourage collaboration between and among internal and external resources.
- Address security and scaling issues of exposing IT assets to the public.

Design and Development Considerations for GSA
- Consider private versus public API creation - private similar to web services (but using
RESTful when possible) for backend system integration and public for allowing 3rd party
data use and application development.
- Move to current favored standard - RESTful (either REST (URI) or Hypermedia (True
REST); possibly consider Event-Driven (loT) (See Figure 3 below).

4 CA Technologies. 2016. AP! Strategy and Architecture: A Coordinated Approach.

=1

Web Service Pragmatic REST Hypermedia Event-Driven

50W- Related Ideal for Web and mabile apps Highly web-centric Appropriate for loT and devices
Lots of toaling available Familiar to mast app dews Scalable and evolable Lightweight and dynamic
Mot suitable for mobile May not be adaptable aver time Nat familiarto many dews Not suitable for standard scenarios

Figure 3: Architectural Styles for API Design

All new solutions should come with APIs, especially for exposing public data. No longer
sufficient to provide only extracts; consider internal architecture particularly with
private APlIs.

Consider integrations tied to APIs and not proprietary systems (e.g. Salesforce, Common
Data Services).

Determine criteria and development of API; priority to develop and resources.

Features of APl - metadata, rules, use, etc. (e.g., Data Standards of 18F and WH).
Develop terms of service - https://petitions.whitehouse.gov/how-why/api-terms-use.

Build-time governance to include a catalog of existing APIs allowing for individuals to
understand what is already in existence before building something new.

Architecture (see Figure 2 below) - consider these four areas

Security Layer - APIs open the world to internal enterprise resources which calls for
proper security being enacted. The most popular is OAuth2 but others include OpenID
Connect, Certificates, Keys and Key Management.

Caching Layer - consider responsiveness provided to APl developers and data consumers
for timely delivery of common requests.

Representation Layer - should be as developer friendly as possible. This should focus on
creating a welcoming way into the API without impacting the backend resources or the
APl itself.

Orchestration Layer - allows for multiple backend resources and composing new
implementations with one or many APlIs.

https://petitions.whitehouse.gov/how-why/api-terms-use

Securlty Layer

IR
-®|O=
t

Representation
Layer

Orcnestration

Layer

AT
IMmpdememaman

Figure 4: Architectural Layers®

Operations and Support

Provision of APIs - consider how the APl will be managed and how consumers will
interact with the APl Gateway and Developer Portal.

Focus on documentation standards and use common tools (e.g., Swagger, RAML,
others).

Expand documenation and style on open.gsa.gov/developer.

Determine APl use and rules for consumers to obtain data (keys, analyze, and control
their traffic (limit gets/posts per hour/minute etc)).

Consider building a prototype for API testing of the design and target persona - consider
commercial tools for assistance (e.g., Apiary).

Need for APl monitoring for holistic view of APl activity across the GSA (Google Analytics
for APIs.).

Metrics for tracking use - collecting information about the consumer (e.g., IP address,
sys name, login, etc.)

Consider APl management tools (e.g., RedHat, APIMAN).

Next Steps
The next steps consist of incorporating the Gartner Recommendations with implementing the

recommendations for the agency including potential easy targets identified below.

Gartner Recommendations®

5 CA Technologies. 2016. API Strategy and Architecture: A Coordinated Approach.
6 Gartner. 2015. Framework for Web APIs.

Manage Web APIs as a technology product, not a transient IT project.

Adopt a customer-centric approach to Web API design that includes personas and
scenario design.

Explicitly define legal and technical contracts.

Commit to implementing and sustaining strong post-production customer support.

Recommendations for GSA APl Implementation Based on Strategy Research

Complete inventory of APIs across GSA - find all APIs, consider owner, purpose,
customer base, architecture, operational support, etc.

Research and stand-up APl Gateway and Developer Portal (Note: open.gsa.gov is a
starting point for a Developer Portal).

Consider API Management service providers and software for long-term design,
development, and management of GSA APIs (maybe for learning and mimicking).
Identify “best of breed” APIs as examples to mimic; identify a group of APIs of value (to
us, to a consumer) and enhance them to match the prescriptions in this strategy doc (or
standards doc to follow).

Consider public data sets to have public APIs; consider private system connections to
have private APIs and private with shareable APIs to trusted partners.

Consider APIs that could have monetary value.

Easy Targets

Public APIs: Open Data datasets, public acquisition data (eBuy, A!), building data.
Private APIs: Travel approvals, speaking engagements, integration with Concur, current
agency SLAs and VPNs connections, others.

Sources

18F API Standards - https://github.com/18F/api-standards.

CA Technologies. 2016. API Strategy and Architecture: A Coordinated Approach.

Forrester Research, Inc. 2015. Brief: Four Ways APIs Are Changing Your Business.

Gartner. 2015. A Guidance Framework for Designing a Great Web API.

Fielding, Roy. 2000. Architectural Styles and the Design of Network-based Software
Architectures. Dissertation.

Jacobson, Daniel. 2011. APIs: A Strategy Guide. O’Reilly Publishing.

Lane, Kin. APl Evangelist, www.apievangelist.com.

Newman, Sam. 2015. Building Microservices. O’Reilly Publishing.

Richardson, Leonard. 2013. RESTful Web APIs. O’Reilly Publishing.

White House API Standards - https://github.com/WhiteHouse/api-standards.

Examples

We the People API
open.nasa.gov
open.epa.gov
open.fda.gov

https://github.com/18F/api-standards
http://www.apievangelist.com/
https://github.com/WhiteHouse/api-standards

