BallTlLe OF TheE

==Y

THe ProBpLem

We track technical support with ServiceNow tickets.

We want to map tickets to apps so GSA can understand the
cost of support for its apps.

To get that useful data, we will want the data from service
tickets to have a field that mapps directly to the name of the
app it applies to.

THe ProBpLem

For example, we would want this entry to be identified as
belonging to ConcurGov

Description: “Concur - checking on status of claim”
Category: “ConcurGov”
Sub-category: “User Training”

ltem: “Authorization”

THe ProBpLem

This is a classification problem, we want to know what app
category should be assigned for each ServiceNow entry.

Humans can do this easily and accurately, but it's repetitive
and takes time away from doing more valuable work, so this
IS a great task to automate.

THe Cconrtenbers

Machine learning

VS.

Leveraging API
data

THe Cconrtenbers

Script leveraging GEAR API data
app_identifier

Machine learning script
tmb_ml_discovery

Code is available on GSA's GitHub org
github.com/GSA

https://github.com/GSA/app_identifier
https://github.com/GSA/tbm_ml_discovery
https://github.com/GSA

WHar IS MacCHIne Learnlna?

You can think of machine

learning as a broad group
of algorithms that identify
patterns

TmBe_Imut_DISCOVeryY

Uses Naive Bayes
classification algorithm.

That means it calculates the
chances that a word will be
a part of a classification
based on training data.

TmBe_Imut_DISCOVeryY

Prototyped using SciKit
Learn in a Jupyter
notebook.

Classification

SciKit Learn is an open
source Python library
for machine learning.

Identifying to which category an
object belongs to.
Applications: Spam detection,
Image recognition.
Algorithms: SVM, nearest neigh-
bors, random forest, ...

Examples

Dimensionality reduc-

Regression

Predicting a continuous-valued
attribute associated with an
object.

Applications: Drug response,
Stock prices.

Algorithms: SVR, ridge regres-

sion, Lasso, ... Examples

Model selection

iscikit-learn

Machine Learning in Python

Clustering

Automatic grouping of similar ob-
jects into sets.
Applications: Customer seg-

mentation, Grouping experiment
outcomes

Algorithms: k-Means, spectral
clustering, mean-shift, ...
Examples

Preprocessing

TmBe_Imut_DISCOVeryY

Hardest part is figuring
out how to clean and
format the data for
processing.

Classification

Identifying to which category an
object belongs to.
Applications: Spam detection,

Image recognition.
Algorithms: SVM, nearest neigh-

bors, random forest, ...
Examples

Dimensionality reduc-

Regression

Predicting a continuous-valued
attribute associated with an
object.

Applications: Drug response,
Stock prices.

Algorithms: SVR, ridge regres-

sion, Lasso, ... Examples

Model selection

iscikit-learn

Machine Learning in Python

Clustering

Automatic grouping of similar ob-

jects into sets.

Applications: Customer seg-

mentation, Grouping experiment

outcomes

Algorithms: k-Means, spectral

clustering, mean-shift, ...
Examples

Preprocessing

TmBe_Imut_DISCOVeryY

Pull req Issues Mar Explore a8+~ F)-

Uses Pandas to easily e

<> Code Issues 3 Pull requests 0 Projects 0 Niki Insights Settings

L |
WO rk WI tI I C SVS Branch: master v tbm_ml_discovery / gear_categories.ipynb Findfile = Copy path

‘A LindsayYoung Add explination of output 050977 on Apr 24

1 contributor

223 lines (222 sloc) 8.11 KB History

N u m py a n d S C i K i t L e a rn This script is trying to predict the top 28 categories is in GEAR

Imports for libraries and data
u u import numpy as np
import pandas as pd
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.feature_extraction.text import TfidfTransformer
from sklearn.naive_bayes import MultinomialNB
input_file = 5 sample.csv"

can do the ead_csv
df = pd.read_csv(input_file, header = 0)

Only need short_description, U_Category_Match, u_category_gear to get the categories

https://pandas.pydata.org/
http://www.numpy.org/
http://scikit-learn.org/stable/index.html

TmBe_Imut_DISCOVeryY

After loading the sample data CSV into a
dataframe, | eliminated the columns that | did not
need and added a column for each app, 1 if it
was that category O if it was not.

Only need short_description, U_Category Match, u_category_gear to get the categories

gear_df = df[['short_description', 'u_category gear']]
remove nulls
gear_df = gear_df.replace(np.nan, '', regex=True)

gear_df[‘eoffer_emod'] = np.where(gear_df['u_category gear']=='eOffer/eMod - Electronic Offers/Ele
ctronic Modifications', 1, 0)

TmBe_Imut_DISCOVeryY

Vectorizing means assigning numbers to
to words to keep track of the vocabulary.

Ignore stop words like “a”, “the”, etc.

Out[17]: (83933, 21967)

TmBe_Imut_DISCOVeryY

Shaping the data is a technique to
normalize a data set.

(5 = TfidfTransformer()
_train_tfidf = tfidf transformer.fit_ transform(X_train_counts

train_tfidf.shape

Out[18]: (83933, 213967)

SHaAPING DAartdga

The library will normalize for us, Naive
Bayes is high bias - low variance

d = 1 (under-fit)

From: https://radimrehurek.com/data_science python/

https://radimrehurek.com/data_science_python/

TmBe_Imut_DISCOVeryY

Loop through each app model to create
a predictive model and apply it to the
existing data as a test.

This will train and test the data for each category. It prints out each category and the accuracy of the model. So, my_app 0.99 means
that the data model predicted the correct category for my app 99% of the time.

In (19): # The most frequently appearing apps in the data
top_apps = ['eoffer_emod', 'vcss', 'any_connect_windows', 'easi ‘google_email', 'pegasys_admin',
'fss_online', 'etams', 'pegasys_data', ‘aloha', 'fmis', 'apm', 'google_docs', 'google_ch

rome',
'ears', 'bookit', 'rocis','eviewer', 'google_calendar',b'geco', 'ors', 'google sites'
‘b1,

'google_hangout', 'google groups', 'vitap', 'ocms', 'pegasys_vrm']

for app in top_apps:
formated_category = gear_df[[app]]
text_clf = MultinomialNB().fit(X_train_counts,formated category.values.ravel())
predicted = text_clf.predict(X_train_counts)
print(app, np.mean(predicted == formated_category.values.ravel()))
gear_df(app] = predicted

TmBe_Imut_DISCOVeryY

Results:

99% to 97% accuracy on each term.
Combined, the data was closer to 80%
accurate.

TmBe_Imut_DISCOVeryY

Pull Issues Mar Explore a +- F)

Turned this into e

<> Code Issues 3 Pull requests 0 Projects 0 Wiki i Settings

u . g
Branch: master~ tbm_ml_discovery / tbm_classifier.py Find file =~ Copy path
a S C I I D ™1 ‘ LindsayYoung Added a check to see if we could get the application from the list of... 3389b2c on May 17
-

1 contributor

120 lines (85 sloc) 3.41 KB Raw Blame History [J o'

-
Run this script on coded data to train a model to identify the associated app from a text description.
I a I n S e a a This will save data models that can classify text to the trained categories.
import json

import numpy as np
import pandas as pd

m n import tables
O e S a from apps impert categories

from utils import load_category_mapping

would like to load from data in next iteration

from sklearn.externals import joblib

|]
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.feature_extraction.text import TfidfTransformer
from sklearn.naive_bayes import MultinomialNB

Training the data model”

input_file = “service_now_sample.csv"
can do the yes to 1 in _
u

https://github.com/GSA/tbm_ml_discovery/blob/master/tbm_classifier.py

TmBe_Imut_DISCOVeryY

Added some logic from the original excel
lookup logic and accuracy improved to
92.5% matches compared to the original
data

Not bad, but wanted to test this against
another approach

dPP_IDenTIlFler

Uses the GEAR API to pull
a current list of applications.
It then looks for the name,
acronym or nickname of the
app in the text of the
ServiceNow ticket.

https://gsa.github.io/GEAR-Documentation/api-docs/console/

dPP_IDenTIlFler

 or jumgp t Pull req Issues rk I Explore a4~ 1R e

GSA | app_identifier @Watch~ 1 Star 0
Calls the GEAR API . Osuie

Branch: master~ app_identifier / find_names.py Findfile = Copy path

1 contributor

55 lines (44 sloc) 1.9 KB Raw Blame History [

] []
python find_names.py <path_tc_files
a I Ial I leS Or Py Lrae
f pandas as pd

input_file = sys.argv(1]

nicknames and the T

get('nttps://ea.gsa.gov/api/v@/applications’, False}.json()

rate a List were and s t versi of the names are in a dic

r app in gear_data:

app it belongs to oy

if

for name
apj
add a
if app('A
for alias in app['Alias'].split(’,

apps [alias] = app['Name']

dPP_IDenTIlFler

Also uses a csv of

(@]] = row(1]

combine tt AR dictionary with t

apps.update(extra_apps)

key phrases to get

df = pd.read_csv(input_file, |

phrase might appear

better results. T a—————— .

I I return 'Allocate according to Apptio “Incident Category Crosswalk"'
OO S O r I l a I I l e S , df ['name_prediction'] = df.apply(lambda row: look_4_name(row), a =1)
write ts to a fi

new_file_name = inp e[+ "_processed.csv"

nicknames and
phrases in the text.

dPP_IDenTIlFler

O 1 or jump t Pull req Issues rk I Explore e

@Watch~ 1 HStar 0

GSA | app_identifier

This simple approach [e=—"

app_identifier / find_names.py

Findfile = Copy path

Branch: master v

gives 87% matches

55 lines (44 sloc) 1.9 KB

python find_names.py <path_tc_files
[[t 3o
O rI I I I a ata port requests
= f pandas as pd

input_file = sys.argv(1]

k for the name e9fe7c4a 6 d

Raw History [P

values in angle brackets:

apps = {}
g of apps
get('nttps://ea.gsa.gov/api/v@/applications’, False}.json()

rate a List were of the names are in a dic

r app in gear_data:

include curre
app['Status'] == ‘'Preduction':
if
for name
ap
add a
if app('A
for alias in app['Alias'].split(’,

apps [alias] = app['Name']

STrenGirHs arib
W@BHI’W@SS@S

TmMB_ImuL_DISCOVeryY sTrenGiHSs

e Pretty good accuracy

e C(Can leverage existing SciKitLearn
library

e Lots of examples of classification with
machine learning

e Fun to build

TMB_IMUL_DISCOVery WeakRnesses

e Not the most elegant implementation
o Code creating code
o More code and dependencies
e Hard to update
o Needs numerous data samples
when there is a new app

dPP_IDenTIFlIer STrernGrHS

e Adapts to the changing app list
automatically

e Pretty good (not as good) accuracy

e Found additional apps hand coding
missed.

e \ery straightforward code base

dPP_IDenNTIFIer WeaRnesses

e Not as accurate
e Some extra false positives

APP_IDenTIFIer

==Y

COMNCLUSIONS

The goal for this project was to save time.

Needing to add numerous training samples every time there
was a new app, would negate the time savings from
automation.

Choosing matinability and simplicity was the best choice to
save time.

