
Battle of the
bots

The problem

We track technical support with ServiceNow tickets.

We want to map tickets to apps so GSA can understand the
cost of support for its apps.

To get that useful data, we will want the data from service
tickets to have a field that mapps directly to the name of the
app it applies to.

The problem

For example, we would want this entry to be identified as
belonging to ConcurGov

Description: “Concur - checking on status of claim”

Category: “ConcurGov”

Sub-category: “User Training”

Item: “Authorization”

The problem

This is a classification problem, we want to know what app
category should be assigned for each ServiceNow entry.

Humans can do this easily and accurately, but it’s repetitive
and takes time away from doing more valuable work, so this
is a great task to automate.

The Contenders

Machine learning

 vs.

Leveraging API
data

the Contenders

Script leveraging GEAR API data

app_identifier

Machine learning script

tmb_ml_discovery

Code is available on GSA’s GitHub org

github.com/GSA

https://github.com/GSA/app_identifier
https://github.com/GSA/tbm_ml_discovery
https://github.com/GSA

What is Machine learning?

You can think of machine
learning as a broad group
of algorithms that identify
patterns

tmb_ml_discovery

Uses Naive Bayes
classification algorithm.

That means it calculates the
chances that a word will be
a part of a classification
based on training data.

tmb_ml_discovery

Prototyped using SciKit
Learn in a Jupyter
notebook.

SciKit Learn is an open
source Python library
for machine learning.

tmb_ml_discovery

Hardest part is figuring
out how to clean and
format the data for
processing.

tmb_ml_discovery

Uses Pandas to easily
work with CSVs

Numpy and SciKit Learn
do the heavy lifting

https://pandas.pydata.org/
http://www.numpy.org/
http://scikit-learn.org/stable/index.html

tmb_ml_discovery

After loading the sample data CSV into a
dataframe, I eliminated the columns that I did not
need and added a column for each app, 1 if it
was that category 0 if it was not.

tmb_ml_discovery

Vectorizing means assigning numbers to
to words to keep track of the vocabulary.

Ignore stop words like “a”, “the”, etc.

tmb_ml_discovery

Shaping the data is a technique to
normalize a data set.

Shaping data

The library will normalize for us, Naive
Bayes is high bias - low variance

From: https://radimrehurek.com/data_science_python/

https://radimrehurek.com/data_science_python/

tmb_ml_discovery

Loop through each app model to create
a predictive model and apply it to the
existing data as a test.

tmb_ml_discovery

Results:

99% to 97% accuracy on each term.
Combined, the data was closer to 80%
accurate.

tmb_ml_discovery

Turned this into
a script.

Trains the data
models and
predicts new
data.

https://github.com/GSA/tbm_ml_discovery/blob/master/tbm_classifier.py

tmb_ml_discovery

Added some logic from the original excel
lookup logic and accuracy improved to
92.5% matches compared to the original
data

Not bad, but wanted to test this against
another approach

app_identifier

Uses the GEAR API to pull
a current list of applications.
It then looks for the name,
acronym or nickname of the
app in the text of the
ServiceNow ticket.

https://gsa.github.io/GEAR-Documentation/api-docs/console/

app_identifier

Calls the GEAR API
and creates a
dictionary of current
app names or
nicknames and the
app it belongs to

app_identifier

Also uses a csv of
key phrases to get
better results.

Looks for names,
nicknames and
phrases in the text.

app_identifier

This simple approach
gives 87% matches
compared to the
original data.

Strengths and
weaknesses

tmb_ml_discovery strengths

● Pretty good accuracy
● Can leverage existing SciKitLearn

library
● Lots of examples of classification with

machine learning
● Fun to build

tmb_ml_discovery weaknesses

● Not the most elegant implementation
○ Code creating code
○ More code and dependencies

● Hard to update
○ Needs numerous data samples

when there is a new app

app_identifier strengths

● Adapts to the changing app list
automatically

● Pretty good (not as good) accuracy
● Found additional apps hand coding

missed.
● Very straightforward code base

app_identifier weaknesses

● Not as accurate
● Some extra false positives

App_identifier
Wins!

conclusions

The goal for this project was to save time.

Needing to add numerous training samples every time there
was a new app, would negate the time savings from
automation.

Choosing matinability and simplicity was the best choice to
save time.

